
  

 

 

Applications in graph theory 

Yuan Liu* 
International curriculum center, High school affiliated to Renmin University of China, Beijing13080, China 

*Corresponding author: 18407239@masu.edu.cn 

Keywords: the graph theory, applications, development. 

Abstract: This paper is talking about the applications of graph theory. The graph theory was 
introduced by Euler in 1736, which made more and more people pay attention to this theory. The 
graph theory has close connections with matrix theory, probability theory, topology, numerical 
analysis, etc. This paper discusses the applications of graph theory in a few areas, such as 
mathematics, computer science, chemistry, and biology, and it introduces and goes through the 
applications by giving some knowledge supplement and reasoning. It suggests that the graph theory 
has been developed quickly and spread into different areas and subjects because of the advancement 
of computer science and technology. This paper may help you to have a deeper understanding of the 
graph theory, and this review will try to highlight the most important applications in these different 
areas. By first presenting the basic knowledge of these fields that are applied to different subjects, 
this paper aims to help you better understand the importance and how it works. 

1. Introduction 
1.1 Background 

In 1736, Euler published the first written report on graph theory in his publications. The early 
issues he considered have a solid practical foundation. Later, studies of electrical networks by German 
naturalist Kirchhoff led to the discovery of the basic concepts and theorems of graph theory; British 
mathematician Kelly used trees to calculate isomerism in organic chemistry; Hamilton, an English 
mathematician, posed a difficult problem related to graph theory; and, finally, the famous four-color 
hypothesis appeared, contributing to the emergence and development of graph theory. A vast number 
of new findings in graph theory were utilized in a variety of fields over the twentieth century. Current 
applications of graph theory are applied in chemistry, problem physics, biology, operations research, 
network theory, information theory, cybernetics, economics, social sciences, etc [1,2]. 

Most people think that the graph theory origins from the problem of the Seven Bridges of 
Königsberg. This question is based on the following scenario: The city of Konigsberg in East Prussia 
straddled both sides of the Pregolya River at the time, and the river had two small islands in the 
middle. Seven bridges connect the island to both sides of the river. What strategies could individuals 
use to walk through all of the bridges at the same time? Euler gave the answer in his second paper 
that this question did not have any solution. Each bridge is viewed as a line, and the area connected 
by the bridge is regarded as a point since Euler simplifies the actual abstract problem as a mix of 
points and lines on a plane. In this method, if you start at one location and return there, the number 
of lines at that position must be an even number, and that site is known as an even vertex. An odd 
vertex, on the other hand, is a point connected by an odd number of lines. Euler said that because the 
Königsberg problem has four odd vertices, it cannot be traversed in a way that answers the query [1]. 

Another famous problem in the history of graph theory is the four-color problem. One of the three 
great mathematical issues in the modern world is the four-color problem. This means that any map 
can utilize four colors to create countries with various colored borders. It was designed to travel to 
the United Kingdom [3]. In 1852, Fernandez Ghenry, a University of London graduate, found an 
intriguing phenomenon: each map can be colored in four different hues, resulting in countries sharing 
a shared border being colored in various colors [4-7]. 
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1.2 Definition and basic knowledge 
The study of graphs, which are mathematical structures used to model pairwise relationships 

between things, is known as graph theory. In this context, a graph is made up of vertices connected 
by edges. There are two kinds of graphs, the first one is the undirected graph, and the other is the 
directed graph. The undirected graph is the graph whose edges link two vertices symmetrically. 
However, the directed graph is the graph whose edges link two vertices asymmetrically [8]. 

A graph can be defined as G (V, E). The V represents the set of vertices and the E represents the 
set of edges. Graph theory nomenclature is not yet standardized. Some authors prefer to use the terms 
instead of the terms "Rather than "vertex" and "edge," use "point" and "line." In issues involving both 
graphs and geometrical or topological structures, its usage may be inconvenient.  In some of the older 
papers we may find "branch" used for "edge, " and "node" for "vertex. When the number of ends on 
an edge is two or one, it is called a link or a loop. We will, however, start referring to each edge as 
having two ends, with the caveat that in the instance of a loop, the two ends will be coincident. The 
two ends of an edge are said to be adjacent when they are linked by that edge. As a result, if and only 
if a vertex is an incident with a loop, we say it is linked to itself or next to itself. A multiple join graph 
is defined as two or more links with the same pair of ends. A strict graph is one that has no loops or 
multiple joins. Only strict graphs are of interest in a number of graph theory topics. As a result, some 
authors limit the term "graph" to what we refer to as a strict graph. They refer to "multigraphs" when 
they need to add loops or numerous joins to their structures [9]. 

1.3 The development of Graph theory 
After the concept of graph theory was first announced, the most popular applications of the graph 

theory are some game problems and game problems, such as the problem of Seven Bridges of 
Königsberg. With the development of the scientists who were drilling the graph theory, it was not 
limited to the simple game problems and research questions, and it develops a new set of problems, 
such as coloring problems and matrix representation problems, as well as the shortest distance 
problem. In 1936, the mathematician König wrote the first monograph on graph theory, and graph 
theory became an independent discipline. Later, with the development of computers, graph theory 
was applied to various practical problems. Recently, the graph theory has applications in physics, 
chemistry, operations research, computer science, electronics, cybernetics, information theory, and 
social sciences. 

2. Applications in mathematics 
2.1 The short path problem 

This problem is about getting the shortest path when traveling through a lot of different places, 
which is really practical. The problem of urban public transit, tourist route selection, and the building 
of various key transmission networks, such as mining areas, may all be solved using the shortest path. 
Both businesses and individuals will benefit from it. As a result, the shortest path problem is essential 
not only in terms of theory, but also in terms of application [10]. 

The Floyd algorithm is a basic method of solving this problem, which is stretched from the graph 
theory. It's a method for determining the shortest pathways in a graph with positive or negative edge 
weights. The technique will find the lengths of shortest paths between all pairs of vertices in a single 
run. It is possible to reconstruct the paths with simple tweaks to the method, even if it does not return 
details of the paths themselves [11]. When solving the short path problem using the Floyd algorithm, 
we need to first define 𝑛𝑛 × 𝑛𝑛 as the sequence matrix sequence of 𝐷𝐷−1,𝐷𝐷0 , …𝐷𝐷𝑛𝑛−1. Then Initialize 
the equation of 𝐷𝐷−1 = 𝐶𝐶. Take 𝐷𝐷−1[𝑖𝑖][𝑗𝑗] as the length of edge< 𝑖𝑖, 𝑗𝑗 >, which represents the initial 
length of the shortest path from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗, and it is the shortest path from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗 without passing through 
other intermediate points. Through Iteration, we need to think that if 𝐷𝐷𝑘𝑘−1 has been solved, how to 
get 𝐷𝐷𝑘𝑘(0 ≤ 𝐾𝐾 ≤ 𝑛𝑛 − 1). 𝐷𝐷𝑘𝑘−1[𝑖𝑖][𝑗𝑗] represents the shortest path, whose intermediate point from I to 
J is not greater than 𝐾𝐾 − 1. Consider adding the vertex K to the path P to obtain vertex sequence 𝑞𝑞, 
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which is 𝑖𝑖, 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗. If 𝑞𝑞 is not a path, the current shortest path is still the previous result, which is  
𝐷𝐷𝑘𝑘[𝑖𝑖][𝑗𝑗]; Otherwise, if the length of 𝑞𝑞 is less than the length of 𝑃𝑃, 𝑞𝑞 would replace 𝑃𝑃 as the shortest 
path from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗 . Since the two subpath 𝑖𝑖… 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘… 𝑗𝑗 of 𝑞𝑞  are the shortest paths, whose 
intermediate points are not greater than 𝑘𝑘 − 1, the shortest path length from i to 𝑗𝑗 whose intermediate 
points are not greater than 𝑘𝑘 is: 

 
𝐷𝐷𝑘𝑘[𝑖𝑖][𝑗𝑗] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐷𝐷𝑘𝑘[𝑖𝑖][𝑗𝑗],𝐷𝐷𝑘𝑘[𝑖𝑖][𝑘𝑘] + [𝑘𝑘][𝑗𝑗]}                    (1) 

 

2.2 The minimum weight spanning tree problem 
If each edge in a graph is associated with a label from a finite label set instead of a weight, the 

minimum labeling spanning tree challenge is to create a spanning-tree with the fewest types of labels. 
In a spanning tree, the highest weighted edge is called a bottleneck edge. For example, if we are 
constructing a new railway that needs to connect a lot of cities, it is easy to connect all the cities, but 
we need to minimize the cost of construction. Take R as a graph, representing a tree connecting all 
the cities. Although there are a lot of different trees, the problem is to find the tree that has the 
minimum constructing cost [8]. 

Graphs can be used to model many applications that are based on real-world networks. Distances, 
travel expenses, building costs, and times are all common properties of the edges of such graphs. 
These graphs are known as weighted graphs. Finding a connected spanning subgraph with the 
minimum possible weight is a common challenge in weighted graphs. As previously stated, such a 
subgraph is a tree because it lacks a cycle. In the construction of electric power grids, railway 
networks, communication networks, water supply networks, natural gas networks, and other 
networks, the difficulty of constructing a spanning tree with the shortest possible weight can emerge. 
Kruskal's or Prim's algorithms can be used to solve this problem quickly [9,12]. 

Using Kruskal’s method to solve the minimum weight spanning tree problem. First, making the 
initial state of the least spanning tree be a non-connected graph 𝑇𝑇 with just n vertices and no edges, 
and each vertex in the graph becomes a connected component by itself, assuming a connected network 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸). In 𝐸𝐸, choose the edge with the lowest cost. Add this edge to 𝑇𝑇 if the vertices related to 
it are on different connected components in 𝑇𝑇; else, ignore it and choose the next edge with the lowest 
cost. The process continues until all of 𝑇𝑇's vertices form a connected component [13]. 

2.3 The four-color problem 
According to the four-color theorem, every map in a plane can be colored with four colors in such 

a way that regions having a common boundary do not have the same color. Although maps are 
mentioned in the presentation of the four-color theorem, map painting does not require it: it only 
needs to color, and it does not need to use the least color. Four colors are rarely utilized when 
designing a map. The four-color dilemma is most commonly applied to scheduling and allocation 
issues. There are various tasks, for example, each of which takes a day. Several of these jobs are 
incompatible, thus, therefore, cannot all be accomplished on the same day. Now, in four days, 
hopefully. Utilize the graph with tasks as vertices, link edges between conflicting tasks, use dates as 
colors, and color the graph to solve the four-color issue. 

3. Applications in computer science 
3.1 The computer drum design problem 

The rotating drum is designed to divide the drum's surface into 16 sectors, as shown in Figure.1, 
with each sector consisting of either a conductor (shaded region) or an insulator (blank area), and four 
contacts, as shown in Figure.2. The output is 1 when the conductor is in touch with the sector, and 0 
when the insulator is in contact. The drum revolves clockwise, and every time it turns one sector, the 
contact outputs a binary signal. The key issue is figuring out how to arrange the conductors or 
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insulators on the drum's 16 sectors so that the contacts produce a distinct set of binary signals after 
each round [9,14]. 

 
Figure 1.  Step 1         Figure 2.  Step 2                Figure 3. Step 3 

Obviously, the signals obtained during rotation are 0010, 1001, 0100, 0010, ..., as shown in 
Figure.2; however, 0010 appears twice, indicating that this drum does not match the design 
requirements. The 16 positions of the drum wheel and the 16 four-bit binary signals output by the 
contact should be in one-to-one correspondence, that is, the 16 binary numbers should be arranged in 
a cyclic sequence, so that the 16 four-digit numbers formed by every four consecutive numbers are 
in one-to-one correspondence, according to the requirements of the question. All of the bit binary 
subsequences are unique. The de Bruijn sequence is the name given to this cyclic sequence. The 
binary cyclic sequence corresponding to the 16 sectors is exactly the de Bruijn sequence, as shown in 
Figure.3. Let 𝑉𝑉 = 000,001,010,011.100,101,110,111  be the item point of c; the association 
between vertices and directed edges, as well as the adjacency between vertices, are as follows: Where 
𝑎𝑎𝑖𝑖=0 or 𝑎𝑎𝑖𝑖 = 1 (𝑗𝑗 = 1,2,3), the vertex 𝑣𝑣𝑖𝑖 = 𝑎𝑎𝑖𝑖1𝑎𝑎𝑖𝑖2𝑎𝑎𝑖𝑖3(𝑖𝑖 = 0,1,2, . . . ,7). 𝑒𝑒𝑖𝑖0 = 𝑎𝑎𝑖𝑖1𝑎𝑎𝑖𝑖2𝑎𝑎𝑖𝑖30and 𝑒𝑒𝑖𝑖1 =
𝑎𝑎𝑖𝑖1𝑎𝑎𝑖𝑖2𝑎𝑎𝑖𝑖31 are the two directed edges produced from 𝑣𝑣𝑖𝑖, with 𝑒𝑒𝑖𝑖𝑖𝑖associated with the 𝑒𝑒𝑖𝑖𝑖𝑖 term point 
𝑎𝑎𝑖𝑖2𝑎𝑎𝑖𝑖30 associated with the vertex 𝑎𝑎𝑖𝑖2𝑎𝑎𝑖𝑖30 . The 16 edges of the loop correspond to a graphic 
arrangement of 16 binary bits, according to adjacency notation [4,15]. 

3.2 de Bruijn sequence 

𝐵𝐵(𝑘𝑘,𝑛𝑛) is a k-element cyclic sequence. All k-element constituent sequences of length n appear 
just once in its subsequences and in a circular form. That is why the Figure.2 does not match the 
requirement since the 0010 repeat again, but in the de Bruijn sequence, all the element can only appear 
once [16]. 

3.3 Transitive closure 

Let A be the Boolean adjacency matrix of a directed graph G with N vertices, with element 𝑎𝑎𝑖𝑖𝑖𝑖  =
 1 if and only if a directed edge exists between vertex I and j. The so-called transitive closure of 𝐴𝐴+, 
also known as vertex 𝑖𝑖 to 𝑗𝑗, is a 𝑁𝑁𝑁𝑁𝑁𝑁 Boolean matrix whose element 𝑏𝑏𝑖𝑖𝑖𝑖=1 if and only if: 1. 𝑖𝑖 = 𝑗𝑗: 
or 2. a directed path from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗, also known as vertex I to j, is reachable. The transitive closure issue 
is the task of determining G's transitive closure from its Boolean adjacency matrix A. The transitive 
closure problem is well-known in scientific computing and has a long history of use. The use of 
multiplication of Boolean matrices to solve the transitive closure problem is a classic technique. This 
section will show how to build the method on both serial and parallel platforms [17]. 

The following is the principle of utilizing Boolean matrix multiplication to solve the transitive 
closure problem: 𝑏𝑏𝑖𝑖𝑖𝑖 = 1 signifies that there is an accessible path of length less than or equal to k 
from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗, otherwise, 𝑏𝑏𝑖𝑖𝑖𝑖 = 0. Clearly, 𝑏𝑏𝑖𝑖𝑖𝑖 = 1 𝑖𝑖𝑖𝑖 ((𝐴𝐴 + 𝐼𝐼)2)2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1 if and only if the path 
length from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗 is 0(𝑖𝑖 = 𝑗𝑗) 𝑜𝑜𝑜𝑜 1. In (𝐴𝐴 + 𝐼𝐼)2, 𝑏𝑏𝑖𝑖𝑖𝑖 = 1 if and only if the path length from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗 is 
less than or equal to 2; In ((𝐴𝐴 + 𝐼𝐼)2)2, 𝑏𝑏𝑖𝑖𝑖𝑖 = 1 if and only if the path length from 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗 is less than 
or equal to 4, and so on in the fourth power of. Because the length of each attainable path between 
any two places is at most 𝑁𝑁 − 1, (𝐴𝐴 + 𝐼𝐼)𝑘𝑘, and is the needed transitive closure 𝐴𝐴+ when 𝑘𝑘 ≥ 𝑁𝑁 −
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1. As a result, so the matrix obtained after 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 times of self-multiplication of the matrix of (A+I) 
is the required transitive closure. 

3.4 Connected component 
If there is a graph G, the connected component of the graph G is the maximum connected subgraph. 

In this subgraph, there is a path connecting each pair of vertices. The linked component problem 
refers to the difficulty of locating all of the graph G's connected components. One of the common 
ways of solving this problem is using the vertex collapse algorithm. 

The N vertices in the network are first treated as 𝑁𝑁 isolated super vertex in the vertex collapse 
algorithm. The edge-connected super vertex is merged one by one until the final connected 
component is generated during the algorithm's operation. Each vertex belongs to only one super 
vertex, and the root of the super vertex is the super vertex with the smallest label. The algorithm's 
flow is made up of a sequence of loops. Each loop is broken down into three sections: 1. Find the 
smallest label of each vertex next to the super vertex; 2. Connect the root of each super vertex to the 
root of the smallest label adjacent to the super vertex; 3. Collapse and merge all of the super vertices 
connected together in step 2 [18]. 

3.5 Single source shortest path 

It is the distance between a single vertex 𝑠𝑠 and all other vertices 𝑖𝑖 the distance between a single 
vertex s and all other vertices 𝑖𝑖 is called a single source. Let 𝐺𝐺(𝑉𝑉,𝐸𝐸) be a directed weighted network, 
with V and E representing the vertex and edge sets, W representing the edge weight adjacency matrix, 
and 𝑤𝑤(𝑖𝑖𝑖𝑖) > 0 representing the edge weight. 𝑖𝑖, 𝑗𝑗 belongs to 𝑉𝑉, so 𝑉𝑉 is the integers between 0 and 
𝑁𝑁 − 1 [19]. 

4. Applications in Chemistry 
The study of graph energy in the field of chemistry. The total electron energy E of the Huckel 

molecular orbital (HMO) is a well-known topological indicator and plays a very important role in 
theoretical chemistry. The total 𝜋𝜋 electron energy of a conjugated molecule is the difference between 
the chemical structure and the thermodynamic stability of the conjugated molecule. It can also explain 
the relationship between the structure and properties of molecules. Through graph theory, the 
relationship between energy and graph can be explored [20]. 

4.1 Sachs’s formula 
Sachs' formula [1] can be used to connect the structure of a non-rooted graph G (for example, a 

graph describing the topology of carbon atoms in a conjugated hydrocarbon) to the characteristic 
polynomial [𝑃𝑃(𝐺𝐺; 𝑥𝑥)] of G's vertex adjacent matrix. [21] Sachs' formula can be expressed as follows: 

 
𝑃𝑃(𝐺𝐺; 𝑥𝑥) = ∑ ∑ (−)𝑐𝑐(𝑠𝑠)2𝑟𝑟(𝑠𝑠)𝑥𝑥𝑁𝑁−𝑛𝑛𝑠𝑠𝑠𝑠𝑆𝑆𝑛𝑛

𝑁𝑁
𝑛𝑛=0                     (2) 

 
Where 𝑠𝑠 is a Sachs graph, 𝑆𝑆𝑛𝑛 is the set of all Sachs graphs with n vertices, 𝑐𝑐(𝑠𝑠) is the number of 

components [22], and 𝑟𝑟(𝑠𝑠) is the number of cycles in 𝑆𝑆, and Sn is the set of all Sachs graphs with n 
vertices. The number of vertices in 𝐺𝐺 is 𝑁𝑁. As demonstrated by Graovac et al., this formula may be 
used to the graphs associated with conjugated hydrocarbons in a simple way. Several alternative 
(ostensibly different) methods to this problem have been demonstrated to be equal [23]. 

4.2 Calculating the energy in the graph 

Consider a graph 𝐺𝐺 with many vertices and m edges, sometimes known as a (𝑛𝑛,𝑚𝑚) graph. T 
polynomial of the graph G is: 

 
𝜙𝜙(𝐺𝐺, 𝜆𝜆) = det (𝜆𝜆𝜆𝜆 − 𝐴𝐴(𝐺𝐺))                           (3) 
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The root of 𝜙𝜙(𝐺𝐺, 𝜆𝜆) = 0,  which is 𝜆𝜆1, 𝜆𝜆2 … , 𝜆𝜆𝑛𝑛 , is the eigenvalue of the graph 𝐺𝐺 , and the 
adjacency matrix of 𝐺𝐺 is 𝐴𝐴(𝐺𝐺). Because 𝐴𝐴(𝐺𝐺) is a real symmetric matrix, graph 𝐺𝐺's eigenvalues 
are all real numbers, and graph 𝐺𝐺's energy is best characterized as: 

 
𝐸𝐸(𝐺𝐺) = |𝜆𝜆1| + |𝜆𝜆2| + ⋯+ |𝜆𝜆𝑛𝑛|                         (4) 

 
The total 𝜋𝜋-electron energy of the molecule represented by the graph is closely related to the 

energy of a molecular graph in chemistry. The total 𝜋𝜋-electron energy of the molecule is nearly equal 
to the thermal energy generated by the synthesis of the conjugated molecule, and the calculation of 
the total 𝜋𝜋-electron energy of the molecule may be attributed to the calculation of [24]: 

 
𝐸𝐸(𝐺𝐺) = ∑ |𝜆𝜆𝑖𝑖|𝑖𝑖=𝑛𝑛

𝑖𝑖=1                               (5) 
 

𝐺𝐺(𝑛𝑛, 2) is a set of unicyclic graphs with n vertices and a cycle 𝐶𝐶 (3 ≤ 𝑙𝑙 ≤ 𝑛𝑛); in the unicycle 
graphs of order 7 and below, there are only a pair of equal energy graphs, and they are homophonic 
[25]. 

Proof: For the calculation of unicyclic graph energy, unicyclic graphs can be divided into two 
categories: One is a cyclic graph; the other is a unicyclic graph with dangling edges; it can be known 
that if 𝐺𝐺 is a cyclic graph of order 𝑛𝑛, and in the first row of A(G), the number 1 is in 𝑎𝑎𝑖𝑖 + 1, and the 
number of other positions is 0, then its eigenvalue is: 

 
{𝜔𝜔𝑗𝑗𝛼𝛼1 + 𝜔𝜔𝑗𝑗𝛼𝛼2 + ⋯+ 𝜔𝜔𝑗𝑗𝛼𝛼𝑘𝑘: 0 ≤ 𝑗𝑗 ≤ 𝑛𝑛 − 1,𝜔𝜔 𝑖𝑖𝑖𝑖 1′𝑠𝑠 𝑛𝑛𝑛𝑛ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢}         (6) 

5. Applications in biomedical 
The inverse problem of the topological index of molecular graphs has attracted interest in recent 

years due to the necessity to find novel medications in biomedicine. People frequently require new 
medications with specific chemical or physical qualities. To synthesize a desired new drug or 
substance, empirical formulas are used to determine the topological index value that the molecular 
pattern of this substance should have, and then a computer search is used to create a database of all 
possible molecular patterns with this index value. Finally, the most ideal and synthetic graphics in 
the library are selected to synthesize them. The creation of a database of molecular graphs with a 
specific topological index value is a crucial stage in this procedure. The problem of molecular graphs 
with a certain topological index value must be addressed in order to create this database. As a result, 
doing an in-depth study on this topic is critical for the deliberate synthesis of novel medications [26]. 

5.1 Molecular Topology Index 
A molecular graph is essentially a non-numerical mathematical object. Molecules' various 

quantifiable properties are frequently stated numerically. As a result, the information gained from the 
molecular diagram must first be translated into a quantity that can be stated numerically in order to 
relate the topological features of molecules to the quantifiable aspects of molecules. The quantities 
that can play this role are the numerous invariants of molecular graphs. That is to say, the invariant 
of the molecular map may be utilized to not only express the molecule's structure quantitatively, but 
also to correlate the relationship between the molecule's structure and attributes. The invariant of a 
molecular graph with this effect is commonly referred to as the molecular topological index [27]. 
Nowadays, there are hundreds of molecular topological indices [28]. 

5.2 Randic index 
Randic proposed a topological invariant of a molecular graph G [29], which is: 

 
𝜔𝜔−12

(𝐺𝐺) = ∑ (𝑑𝑑(𝑢𝑢)𝑑𝑑(𝑣𝑣))−1 2⁄
𝑢𝑢,𝑣𝑣                          (7) 
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The aim was to use it as a measure of the branching nature of the skeleton of carbon atoms in 
organic molecules, which he found to be related to a number of physicochemical properties, such as 
boiling points, chromatographic retention times, enthalpies of formation, surface areas and solubility 
in water. Later, other scientists use the arbitrary real numbers to substitute −1

2
 [30]. 

 
𝜔𝜔𝛼𝛼(𝐺𝐺) = ∑ (𝑑𝑑(𝑢𝑢)𝑑𝑑(𝑣𝑣))𝛼𝛼(𝑢𝑢,𝑣𝑣)∈𝐸𝐸(𝐺𝐺)                         (8) 

 
Since 1975, the Randic index, and later the generalized Randic index, has been one of the most 

widely used molecular structure descriptors for predicting the physical and chemical properties of 
organic compounds in quantitative structure-activity correlations and quantitative structure-property 
relationships. Pharmacological qualities are particularly important. 

6. Conclusion and future work 
Graph theory has a long history, and its progress has been accelerated by the rapid advancement 

of computer technology. Graph theory is everywhere; it can be found in many aspects of our life, but 
because most people don't comprehend it, it has received little attention. Despite the fact that it is an 
active subject with a wide range of applications, the approach still has limits and requires further 
research. Through the application of graph theory in various fields above, we can see the importance 
of graph theory in our lives. A graph isomorphism means that, despite the fact that there are many 
distinct types of graphs, they all have the same term points and edges, as well as the same continuity. 
This has a bright future in terms of applications, with applications in chemistry, computer science, 
operations research, electronics, and other domains. However, solving the isomorphism of 
complicated graphs is challenging since the time complexity technique has constraints when it comes 
to employing objects. 
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